Multi-Organ Segmentation with Missing Organs in Abdominal CT Images
نویسندگان
چکیده
Currently, multi-organ segmentation (MOS) in abdominal CT can fail to handle clinical patient population with missing organs due to surgical resection. In order to enable the state-of-the-art MOS for these clinically important cases, we propose (1) automatic missing organ detection (MOD) by testing abnormality of post-surgical organ motion and organ-specific intensity homogeneity, and (2) atlas-based MOS of 10 abdominal organs that handles missing organs automatically. The proposed methods are validated with 44 abdominal CT scans including 9 diseased cases with surgical organ resections, resulting in 93.3% accuracy for MOD and improved overall segmentation accuracy by the proposed MOS method when tested on difficult diseased cases,
منابع مشابه
Analyses of Missing Organs in Abdominal Multi-Organ Segmentation
Current methods for abdominal multi-organ segmentation (MOS) in CT can fail to handle clinical patient population with missing organs due to surgical removal. In order to enable the state-of-the-art atlas-guided MOS for these clinical cases, we propose 1) statistical organ location models of 10 abdominal organs, 2) organ shift models that capture organ shifts due to specific surgical procedures...
متن کاملAutomatic Multi-organ Segmentation on Abdominal CT with Dense V-networks
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher ...
متن کاملHierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images
We present a novel framework for the segmentation of multiple organs in 3D abdominal CT images, which does not require registration with an atlas. Instead we use discriminative classifiers that have been trained on an array of 3D volumetric features and implicitly model the appearance of the organs of interest. We fully leverage all the available data and extract the features from inside superv...
متن کاملOn the influence of Dice loss function in multi-class organ segmentation of abdominal CT using 3D fully convolutional networks
Deep learning-based methods achieved impressive results for the segmentation of medical images. With the development of 3D fully convolutional networks (FCNs), it has become feasible to produce improved results for multi-organ segmentation of 3D computed tomography (CT) images. The results of multi-organ segmentation using deep learning-based methods not only depend on the choice of networks ar...
متن کاملProstate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 15 Pt 3 شماره
صفحات -
تاریخ انتشار 2012